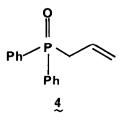

DIRECT, STEREOSELECTIVE SYNTHESIS OF EITHER <u>E</u>- OR <u>Z</u>-1, 3-DIENES

Junzo Ukai, Yoshihiko Ikeda, Nobuo Ikeda, and Hisashi Yamamoto Department of Applied Chemistry, Nagoya University Chikusa, Nagoya 464, Japan

Summary: New synthetic methods for the preparation of \underline{Z} - or \underline{E} -1, 3-dienes are described.

Despite the availability of many reagents for the carbonyl olefination reactions, there still exists a need for new method, especially for the stereoselective route to conjugated polyenes under mild conditions.¹ Herein we disclose the results of our new procedure involving (diphenylphosphino)allyl-titanium reagent ^{2,3} which was prompted by our earlier success with (alkylthio)allyltitanium reagent.⁴ The sequence of new process is as follows:

Reaction of (diphenylphosphino)allyltitanium reagent of type 1, generated by the addition of titanium tetraisopropoxide to the lithiated allyldiphenylphosphine, ⁵ with aldehydes gave α -<u>erythro</u>-adduct 2 exclusively which may be converted directly to the β -oxido phosphonium salt of type 3 on treatment with methyl iodide. ⁶ The betaines so produced were smoothly transformed into the Z-1, 3-dienes <u>via</u> the cycloelimination of the sort already established for the Wittig reaction. ⁶ Since the consecutive additionelimination reactions were usually both satisfactory and convenient, it is advisable not to isolate and purify the intermediate β -hydroxyphosphines. The major results of our findings are illustrated in Table 1.


rapic r.	Conversion R-CHO \rightarrow RCH=CHO	2^{2}	$2^{1} \frac{2}{2} \frac{2}{2} \frac{2}{2}$
Entry	Carbonyl compound	Yield ^b	$\underline{\mathbf{E}}/\underline{\mathbf{Z}}^{\mathbf{c}}$
1	Cyclohexanecarbaldehyde	86	4:96
2	<u>n</u> -Decanal	84	5:95 ^d
3	Perillaldehyde	76	7:93
4	Benzaldehyde	89	4:96
5	trans-Cinnamaldehyde	82	6:94
6	4-tert-Butylcyclohexanone	32 ^e	

Conversion B (NO) BOU-CHOU--CH using Dh DCH CH-CH a Table 1

 $^{a}_{1}$ All reactions were carried out on a 2-3 mmol scale as described in the text. Yields of isolated product. The products were identified by PMR and IR spectra, and/or comparison with authentic materials. ^CUnless otherwise specified, $\underline{E}/\underline{Z}$ ratio was determined by GC analysis with authentic materials. $\underline{E}/\underline{Z}$ ratio was estimated by the PMR assay. ^e Low reactivity of the titanium reagents, see ref. 2.

A typical procedure is as follows: To a solution of allyldiphenylphosphine 5 (0.54 g, 2.4 mmol) in dry THF (8 mL) was added tert-butyllithium (1.0 mL of a pentane solution, 2.4 mmol)⁷ dropwise at -78°C. and the mixture was stirred at 0°C for 30 min. Titanium tetraisopropoxide (0.71 mL, 2.4 mmol) was added dropwise at -78°C, and the resulting redish solution was stirred for 10 min. Cyclohexanecarbaldehyde (0.24 mL, 2.0 mmol) was added over a period of 5 min at -78°C, and the mixture was stirred at -78°C for 10 min and then at 0°C for 1 h. Methyl iodide (0.15 mL, 2.4 mmol) was added at 0°C and the mixture was stirred at room temperature for 2 h. After the usual workup, the product was purified by column chromatography on silica gel to give 1-cyclohexyl-1,3-butadiene (0.23 g. 86%).

In order to prove further the generality and limitations of our new process, we turned our attention to the possibility of synthesizing 1, 3-dienes by means of readily available allyldiphenylphosphine oxide (4). ⁹ Unfortunately, however, the titanium derivative from 4 was found to be a totally unsatisfactory reagent for such transformations and no or very small amount of 1, 3-diene was produced under the same reaction conditions.¹⁰ In contrast, when the same reaction using the lithio derivative from 4 was conducted in dry THF with 2 equiv of hexamethylphosphorictriamide (HMPA) at -78°C for 10 min (followed by stirring at 20°C and isolation) the E-1, 3-diene was formed with E/Z ratios in the range 90:10 to 95:5.¹¹ The results are illustrated in Table 2 and 3.

A typical experimental procedure for the <u>E</u>-1, 3-diene synthesis is as follows: To a stirred solution of allyldiphenylphosphine oxide (0.27 g, 1.2 mmol) in dry THF (4 ml) and HMPA (0.43 g, 2.4 mmol) was added <u>n</u>-butyllithium (0.68 mL of a hexane solution, 1.2 mmol) dropwise at -78°C, and the mixture was stirred at -78°C for 10 min. Cyclohexanecarbaldehyde (0.13 mL, 1.0 mmol) was added over a period of 15 min at -78°C, and the resulting mixture was stirred at -78°C for 10 min, 0°C for 30 min, and finally 20°C for 2 h. After the usual workup, the product was purified by column chromatography on silica gel to afford 1-cyclohexyl-1, 3-butadiene (0.11 g, 82%).¹²

Entry	Carbonyl compound	Yield ^b	$\underline{\mathbf{E}}/\underline{\mathbf{Z}}^{\mathbf{c}}$
1	Cyclohexanecarbaldehyde	82	90:10
2	n-Decanal	88	95:5 ^d
3	Perillaldehyde	42	94:6
4	Benzaldehyde	79	95:5
5	4-tert-Butylcyclohexanone	83	
Table 3.	M ↓ Conversion R-CHO → RCH=C		O 2 ^P CH−CH=C Me
	Ĩ		
Table 3. Entry	Conversion R-CHO \rightarrow RCH=C	-CH=CH ₂ using Ph	Me
Entry	Conversion R-CHO> RCH=C Carbonyl compound	-CH=CH ₂ using Ph Yield ^b	<u>Е</u> / <u>Z</u> ^с
Entry 1	Conversion R-CHO \longrightarrow RCH=C Carbonyl compound Cyclohexanecarbaldehyde	-CH=CH ₂ using Ph Yield ^b 64	<u>Е</u> / <u>Z</u> ^с

^aAll reactions were carried out on a 1-2 mmol scale as described in the text. The product were identified by PMR and IR spectra, and/or comparison with authentic materials.

^bYields of isolated product. ^cUnless otherwise specified, $\underline{E}/\underline{Z}$ ratio was determined by GC analysis with authentic materials. ^d $\underline{E}/\underline{Z}$ ratio was estimated by the PMR assay.

In conclusion, with a variety of carbonyl compounds, a simple, one-pot procedure is now available for the synthesis of \underline{E} - or \underline{Z} -1, 3-diene with high stereoselectivity in good yield. These results may be rationalized as follows. The titanium reagent from allyldiphenylphosphine probably exists at least partially as the vinyl phosphine isomer 1.⁴ Reaction of 1 with aldehyde through a six-membered cyclic transition state with minimal steric repulsion is expected to lead to the \underline{Z} -1, 3-diene.⁴ In THF-HMPA

solution the condensation of the lithic conjugated base 4 with aldehyde may be reversible and the product ratio is thermodynamically controlled.¹³

<u>Acknowledgment</u>. This work was generously supported in part by the Ministry of Education, the Japanese Government (Grant-inaid, No.57550534) and Asahi Glass Foundation.

References and Notes

- Recent review: G. Pattenden In "Comprehensive Organic Chemistry, Vol. 1"; Sir D. Barton and W. D. Ollis, Eds.; Pergamon Press, Oxford, 1979; pp 171-186.
- For recent syntheses of 1, 3-diene using trimethylsilylallyltitanium reagents, see (a) F. Sato, Y. Suzuki, and M. Sato, <u>Tetrahedron Lett.</u>, <u>23</u>, 4589 (1982); (b) M. T. Reetz and B. Wenderoth, <u>ibid.</u>, <u>23</u>, 5259 (1982); see also, (c) Y. Yamamoto, Y. Saito, and K. Maruyama, <u>ibid.</u>, <u>23</u>, 4597 (1982); (d) idem, J. Chem. Soc., Chem. Commun., <u>1982</u>, 1327.
- For recent reviews, (a) M. T. Reetz In "Topics in Current Chemistry, Vol. 106"; Springer-Verlag, Berling, 1982; (b) B. Weidmann and D. Seebach, <u>Angew. Chem. Int. Ed. Engl.</u>, <u>22</u>, 31 (1983).
- Y. Ikeda, K. Furuta, N. Meguriya, N. Ikeda, and H. Yamamoto, <u>J. Am. Chem. Soc.</u>, <u>104</u>, 7663 (1982).
- 5. F. G. Mann and M. J. Pragnell, J. Chem. Soc., 1965, 4120.
- 6. E. Vedejs and P. L. Fuchs, J. Am. Chem. Soc., 95, 822 (1973).
- 7. The generation of the lithio derivative was also accomplished with <u>n</u>-butyllithium but in slightly lower yield.
- Z-Isomer: ¹H NMR (CDCl₃) 2.41 (br, 1H), 5.12 (d, 17 Hz, 1H), 5.20 (d, 10 Hz, 1H), 5.29 (dd, 10 and 7 Hz, 1H), 5.87 (dd, 10 and 10 Hz, 1H), 6.64 (ddd, 10, 10, and 17 Hz, 1H); IR (film) 3074, 2990, 1645, 1600, 1002, 967, 910 cm⁻¹.
- 9. Prepared by the modified procedure of M. P. Savage and S. Trippett [J. Chem. Soc., 1966, 1842]: A mixture of allyl alcohol (6.8 mL), chlorodiphenylphosphine (18 mL) and pyridine (18 mL) in dry ether (200 mL) was stirred at 0°C for 1 h. Powdered NaHSO₄ · H₂O (30 g) was added and stirred for 5 min. The suspension was filtered and the filtrate was concentrated <u>in vacuo</u>. The residue was dissolved in xylene (100 mL) and the mixture was heated at reflux for 2-3 h. Concentration followed by recrystallization (ether-hexane) gave allyldiphenylphosphine oxide in 65-73% yield.
- 10. The similar low reactivity of the titanium reagent was observed for the conjugate anion of phenyl allyl sulfoxide (unpublished results by Y. I.).
- 11. The carbanion formed by treating an allylphosphonodiamide with <u>n</u>-butyllithium, see E. J. Corey and D. E. Cane, <u>J. Org. Chem.</u>, 38, 2921 (1969).
- 12. <u>E-Isomer</u>: ¹H NMR (CCl₄) 2.0 (1H), 4.80 (d, 9 Hz, 1H), 4.93 (d, 18 Hz, 1H), 5.45 (dd, 6 and 15 Hz, 1H), 5.89 (dd, 9 and 15 Hz, 1H), 6.10 (ddd, 9,9 and 18 Hz, 1H); IR (CCl₄) 3100, 3040, 1660, 1620, 1002, 975, 955 cm⁻¹.
- W. S. Wadsworth, Jr., <u>Organic Reactions</u>, <u>25</u>, 73 (1977). (Received in Japan 6 June 1983)